Fuel cells have become widely known for converting fuel and air into electricity, CO2, H2O,
and heat at high efficiencies. Solid oxide fuel cells (SOFC's) are constructed with a ceramic
electrolyte, anode and cathode and either a metal or ceramic interconnect. SOFC's are
attractive because of their ability to oxidize many fuel sources and their high efficiency. Because
their minimum operating temperature is usually well above 600ºC, SOFC's are limited in their
materials selection, start up time, and applications.
Our lab has made crucial strides in all areas of SOFC performance and operating temperature.
A recent breakthrough in electrolyte material called SNDC shows a five-fold increase in ionic
conductivity over the popular yttria-stabilized zirconia (YSZ) electrolyte. Dr. Wachsman's
continuum-level electrochemical model showed an end to the trend of thinner electrolyte
layers helped optimize fuel cell design. We have successfully constructed a 3D model of an
LSCF cathode which provides the ability to quantify porous cathode microstructure at the
submicrometer level.
"Comprehensive Quantification of Porous LSCF Cathode Microstructure and Electrochemical Impedance,” D. Gostovic, J.A. Taillon, J.R. Smith, N.J. Vito, K.A. O’Hara, K.S. Jones, and E.D. Wachsman, Journal of Electrochemical Society, submitted
“Stannate-based Ceramic Oxide as Anode Materials for Oxide-ion Conducting Low-Temperature Solid Oxide Fuel Cells,” A.M. Hussain, K.-J. Pan, I. Robinson, T. Hays, and E.D. Wachsman, Journal of the Electrochemical Society, 163 (10) F1198-F1205 (2016).
“Electrochemical and Catalytic Properties of Fe-Doped SrCo0.9-xNb0.1FexO3-δ Cathode Materials,” G. Cohn, J. Wang, C. Pellegrinelli, K. Huang, and E.D. Wachsman, Journal of the Electrochemical Society, 163 (9), F979-F987 (2016).
“Dysprosium and Gadolinium Double Doped Bismuth Oxide Electrolytes for Low Temperature Solid Oxide Fuel Cells,” D.W. Jung, K.T. Lee, and E.D. Wachsman, Journal of The Electrochemical Society, 163, F411-4145 (2016).
“Fundamental Impact of Humidity on SOFC Cathode ORR,” Y-L, Huang, C. Pelligrinelli, and E.D. Wachsman, Journal of the Electrochemical Society, 163 (3) F171-F182 (2016).
“Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ Surface Exchange through Ion Implantation,” Y-L, Huang, C. Pelligrinelli, K.T. Lee, A. Perel, and E.D. Wachsman, Journal of the Electrochemical Society, 162, F965-970 (2015).
“Towards a Fundamental Understanding of the Cathode Degradation Mechanisms,” E.D. Wachsman, Y-L, Huang, C. Pelligrinelli, J.A. Taillon, and L.G. Salamanca-Riba, Ionic and Mixed Conducting Ceramics 9, ECS Transactions, M.B. Mogensen, T.M. Gur, X.D. Zhou, T. Armstrong, T. Kawada, A. Manivannan, Ed, 61, 47-56 (2014)
“A Model for Extracting Fundamental Kinetic Rates of SOFC Cathode Materials from Oxygen Isotope Experiments,” Y-L, Huang, C. Pelligrinelli, and E.D. Wachsman, Ionic and Mixed Conducting Ceramics 9, ECS Transactions, M.B. Mogensen, T.M. Gur, X.D. Zhou, T. Armstrong, T. Kawada, A. Manivannan, Ed, 61, 93-107 (2014).
“Three Dimensional Microstructural Characterization of Cathode Degradation in SOFCs Using Focused Ion Beam and SEM,” J.A. Taillon, C. Pelligrinelli, Y-L, Huang, E.D. Wachsman, and L.G. Salamanca-Riba, Ionic and Mixed Conducting Ceramics 9, ECS Transactions, M.B. Mogensen, T.M. Gur, X.D. Zhou, T. Armstrong, T. Kawada, A. Manivannan, Ed, 61, 109-120 (2014).
“Rational Design of Lower Temperature Solid Oxide Fuel Cell Cathodes via Nano-tailoring of Co-assembled Composite Structures” K.T. Lee, A.A. Lidie, H.S. Yoon, and E.D. Wachsman, Angewandte Chemie, 53, 13463-13467 (2014) DOI: 10.1002/anie.201408210.
“Terbium and Tungsten Co-doped Bismuth Oxide Electrolytes for Low Temperature Solid Oxide Fuel Cells” D.W. Jung, K.T. Lee, and E.D Wachsman, Journal of the Korean Ceramic Society, 51, 260-264 (2014).
“Enhanced Oxygen Reduction Reaction with Nano-Scale Pyrochlore Bismuth Ruthenate via Cost-Effective Wet-Chemical Synthesis” K.T. Lee, B.W. Lee, M.A. Camaratta, and E.D Wachsman, RSC Advances, 3, 19866-19871 (2013).
"Highly Functional Nano-scale Stabilized Bismuth Oxides via Reverse Strike Co-precipitation for Solid Oxide Fuel Cells" K.T. Lee, A.A. Lidie, S.Y. Jeon, G.T. Hitz, and E. D. Wachsman, Journal of Materials Chemistry, 1, 6199-6207 (2013) DOI: 10.1039/c3ta10570a
“Performance of La0.1Sr0.9Co0.8Fe0.2O3-d and La0.1Sr0.9Co0.8Fe0.2O3-d-Ce0.9Gd0.1O2 Oxygen Electrodes with Ce0.9Gd0.1O2 Barrier Layer in Reversible Solid Oxide Fuel Cells,” M.-B. Choi, B. Singh, E. D. Wachsman, and S.-J. Song, Journal of Power Sources, 239, 361-373 (2013).
"Comprehensive Quantification of Ni-Gd0.1Ce0.9O1.95 Anode Functional Layer Microstructures by Three-Dimensional Reconstruction Using a FIB/SEM Dual Beam System," K. T. Lee, N. J. Vito, and E. D. Wachsman, Journal of Power Sources, 228, 220-228 (2013).
"Feasibility of Low Temperature Solid Oxide Fuel Cells Operating on Reformed Hydrocarbon Fuels" K.T. Lee, C.M. Gore, and E. D. Wachsman, Journal of Materials Chemistry, 22, 22405-22408 (2012).
“Electrochemical Properties of Ceria-Based Intermediate Temperature Solid Oxide Fuel Cells Using Microwave Heated La0.1Sr0.9Co0.8Fe0.2O3-d as a Cathode,” M.-B. Choi, K.-T. Lee, H.-S. Yoon, S.-Y. Jeon, E. D. Wachsman, and S.-J. Song, Journal of Power Sources, 220, 377-382 (2012).
"The Evolution of Low Temperature Solid Oxide Fuel Cells,” K. T. Lee, H. S. Yoon, and E. D. Wachsman, Journal of Materials Research, 27, 2063-2078 (2012) - Invited Feature Paper.
"Interfacial Modification of La0.80Sr0.20MnO3-d - Er0.4Bi0.6O3 Cathodes for High Performance Lower Temperature Solid Oxide Fuel Cells,” K. T. Lee, D.W. Jung, H. S. Yoon, A.A. Lidie, M.A. Camaratta, and E. D. Wachsman, Journal of Power Sources, 220, 324-330 (2012).
“Mechanism of La0.6Sr0.4Co0.2Fe0.8O3-δ Cathode Degradation,” D. Oh, D. Gostovic, and E. D. Wachsman, Journal of Materials Research, 27, 1992-1999 (2012).
"Bimodally-Integrated Anode Functional Layer for Lower Temperature Solid Oxide Fuel Cells" K.T. Lee, H.S.Yoon, J.S. Ahn, and E. D. Wachsman, Journal of Materials Chemistry, 22, 17113-17120 (2012).
"Role of Solid Oxide Fuel Cells in a Balanced Energy Strategy,” E. D. Wachsman, C. A. Marlowe and K. T. Lee, Energy and Environmental Science, 5, 5498-5509 (2012) DOI:10.1039/c1ee02445k - Invited Analysis.
"Effect of Ni-Gd0.1Ce0.9O1.95 Anode Functional Layer Composition on Performance of Lower Temperature SOFCs" K.T. Lee, N. Vito, H.S.Yoon, and E. D. Wachsman, Journal of the Electrochemical Society, 159, F187-193 (2012).
"Gd0.1Ce0.9O1.95/Er0.4Bi1.6O3 Bilayer Electrolytes Fabricated by a Simple Colloidal Route using Nano-Sized in Er0.4Bi1.6O3 Powders for High Performance LT-SOFCs," K. T. Lee, D. W. Jung, M. A. Camaratta, H. S. Yoon, J. S. Ahn, and E. D. Wachsman, Journal of Power Sources, 205, 122-128 (2012).
"Lowering the Temperature of Solid Oxide Fuel Cells,” E. D. Wachsman and K. T. Lee, Science, 334, 935-939 (2011) - Invited Review.
“Towards a Fundamental Understanding of the Oxygen Reduction Mechanism,” E.D. Wachsman and E.N. Armstrong, Solid Oxide Fuel Cells XII, ECS Transactions, S.C. Singhal, and K. Eguchi, Ed, 35, 1955-1963 (2011).
“High Performance LSM-ESB Cathode on ESB Electrolyte for Low to Intermediate Temperature Solid Oxide Fuel Cells,” K.T. Lee, D.W. Jung, H.S. Yoon, M.A. Camarratta, N.A. Sexson, and E.D. Wachsman, Solid Oxide Fuel Cells XII, ECS Transactions, S.C. Singhal, and K. Eguchi, Ed, 35, 1955-1963 (2011).
"Determination of Surface Exchange Coefficients of LSM, LSCF, YSZ, GDC Constituent Materials in Composite SOFC Cathodes," E. N. Armstrong, K. L. Duncan, D. J. Oh, J. F. Weaver, and E. D. Wachsman, Journal of the Electrochemical Society, 158, B492-499 (2011).
“Stoichiometry of the LaFeO3 (010) Surface Determined from First Principles and Thermodynamic Calculations,” C.-W. Lee, R. K. Behera, E. D. Wachsman, S. R. Phillpot, and S. B. Sinnott, Physical Review B, 83, 115418 (2011).
“Proton Conduction in Acceptor Doped SnP2O7,” S. R. Phadke, C. R. Bowers, E. D. Wachsman, and J. C. Nino, Solid State Ionics, 183, 26-31 (2011).
“Microstructure and Connectivity Quantification of Complex Composite Electrode Three-Dimensional Networks,” D. Gostovic, N. J. Vito, K. A. O'Hara, K.S. Jones, and E. D. Wachsman, Journal of the American Ceramic Society, 94, 620-627 (2011).
"Dependence of Open-Circuit Potential and Power Density on Electrolyte Thickness in Solid Oxide Fuel Cells with Mixed Conducting Electrolytes," K. L. Duncan, K. T. Lee, and E. D. Wachsman, Journal of Power Sources, 196, 2445-2451 (2011).
"Surface Exchange Coefficients of Composite Cathode Materials Using In Situ Isothermal Isotope Exchange," E. N. Armstrong, K. L. Duncan, and E. D. Wachsman, Journal of the Electrochemical Society, 158, B283-B289 (2011).
“Thermo-Chemical Expansion in Strontium Doped Lanthanum Cobalt Iron Oxide (LSCF),” S.R. Bishop, K. L. Duncan, and E. D. Wachsman, Journal of the American Ceramic Society, 93, 4115-4121 (2010).
“Effect of La2Zr2O7 on Interfacial Resistance in Solid Oxide Fuel Cells,” A. Chen, J. Smith, K. Duncan, R.T. DeHoff, K. Jones, and E. D. Wachsman, Journal of the Electrochemical Society, 157, B1624-B1628 (2010).
“Effect of Ni-GDC AFL Composition on Performance of IT-SOFCs,” K.T. Lee, N.J. Vito, M.A. Camaratta, H.S. Yoon and E.D. Wachsman, ECS Transactions, 28-11, 151-163 (2010).
“A Critical Assessment of Interatomic Potentials for Ceria with Application to its Elastic Properties,” H. Xu, R. K. Behera, Y. Wang, F. Ebrahimi, S. B. Sinnott, E. D. Wachsman, and S. R. Phillpot, Solid State Ionics, 181, 551-556 (2010).
"Enhanced Long-Term Stability of Bismuth Oxide-Based Electrolytes for Operation at 500°C," D. W. Jung, J. C. Nino, K. L. Duncan, S. R. Bishop, and E. D. Wachsman, Ionics, 16, 97-103 (2010).
“Development of High Performance Ceria/Bismuth Oxide Bilayered Electrolyte SOFCs for Lower Temperature Operation,” J. S. Ahn, M. A. Camaratta, D. Pergolesi, K. T. Lee, H. Yoon, B. W. Lee, D. W. Jung, E. Traversa and E. D. Wachsman, Journal of The Electrochemistry Society, 157, B376-382 (2010).
“Isotopic-Switching Analysis of Oxygen Reduction in Solid Oxide Fuel Cell Cathode Materials,” C. C. Kan and E. D. Wachsman, Solid State Ionics, 181, 338-347 (2010).
“Composite Cathodes for High Temperature Proton Conducting Electrolytes,” E. Fabbri, S. Licoccia, E. Traversa, and E. D. Wachsman, Fuel Cells, 9, 128-138 (2009).
“Performance of Anode Supported SOFC using Novel Ceria Electrolyte,” J. S. Ahn, S. Omar, H. Yoon, J. C. Nino, and E. D. Wachsman, Journal of Power Sources, 195, 2131-2135 (2009).
“Performance of IT-SOFC with Ce0.9Gd0.1O0.1.95 Functional Layer at the Interface of Ce0.9Gd0.1O0.1.95 Electrolyte and Ni- Ce0.9Gd0.1O0.1.95 Anode,” J. S. Ahn, H. Yoon, K. T. Lee, M. Camaratta, and E. D. Wachsman, Fuel Cells, 9, 643-649 (2009).
“Surface and Bulk Defect Equilibria in Strontium Doped Lanthanum Cobalt Iron Oxide,” S.R. Bishop, K. L. Duncan, and E. D. Wachsman, Journal of the Electrochemical Society, 156, B1242-1248 (2009).
“Development of a Lower Temperature SOFC,” E.D. Wachsman, Solid Oxide Fuel Cells XI, ECS Transactions, S.C. Singhal, and H. Yokokawa, Ed, 25-2, 783-788 (2009).
“Mechanistic Understanding of Cr Poisoning on La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF),” D. Oh, E. Armstrong, D. Jung, C. Kan, and E.D. Wachsman, Solid Oxide Fuel Cells XI, ECS Transactions, S.C. Singhal, and H. Yokokawa, Ed, 25-2, 2871-2879 (2009).
“Continuum - Level Analytical Model for Solid Oxide Fuel Cells with Mixed Conducting Electrolytes,” K. L. Duncan and E. D. Wachsman, Journal of the Electrochemical Society, 156, B1030-1038 (2009).
“Composite Cathodes on Barium Cerate Proton Conducting Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs),” E. Fabbri, S. Licoccia, E. Traversa, and E. D. Wachsman, Solid State Ionics - 2008, MRS Proceedings, E. Traversa, T.R. Armstrong, K. Eguchi, M.R. Palacin, Ed, 1126, 93-98 (2009).
“High-Performance Bilayered Electrolyte Intermediate Temperature Solid Oxide Fuel Cells,” J. S. Ahn, D. Pergolesi, M. A. Camaratta, H. Yoon, B. W. Lee, E. Traversa and E. D. Wachsman, ElectrochemistryCommunications, 11, 1504-1507 (2009).
“High Performance Ceria/Bismuth Oxide Bilayered Electrolyte IT-SOFC,” J. S. Ahn, M. Camaratta, K.T. Lee, H. S. Yoon, B. W. Lee, and E.D. Wachsman, ECS Transactions, 16-51, 135 (2009).
“Multiple Length Scale Characterization of Doped Lanthanum Manganate,” D. Gostovic, K. A. O’Hara, N. J. Vito, E.D. Wachsman and K. S. Jones, ECS Transactions, 16-51, 83 (2009).
“Mixed Protonic-Electronic Conductors as Cathode Materials for Proton Conducting Electrolytes in Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs),” E. Fabbri, T.-K. Oh, S. Licoccia, E. Traversa, and E. D. Wachsman, Journal of the Electrochemical Society, 156, B38-45 (2009).
“Evaluation of the Relationship Between Cathode Microstructure and Electrochemical Behavior for SOFCs,” J.R. Smith, A. Chen, D. Gostovic, D. Hickey, D. Kundinger, K.L. Duncan, R.T. DeHoff, K.S. Jones and E.D. Wachsman, Solid State Ionics, 180, 90-98 (2009).
“Impedance Studies on Bismuth-Ruthenate-Based Electrodes,” A. Jaiswall and E.D. Wachsman, Ionics, 15, 1-9 (2009).
"Performance of IT-SOFC with Ce0.9Gd0.1O1.95 Functional Layer at the Interface of Ce0.9Gd0.1O1.95 Electrolyte and Ni-Ce0.9Gd0.1O1.95 Anode," J. Ahn, H. Yoon and E.D. Wachsman, Solid State Ionic Devices V, ECS Transactions, E.D. Wachsman, F.H. Garzon, E. Traversa, R. Mukundan, and A. Manivannan, Ed., 11-33, 99-106 (2008).
“Characterization of Lanthanum Zirconate Formation at the A-Site Deficient Strontium-Doped Lanthanum Manganite Cathode /Yttrium Stabilized Zirconia Electrolyte Interface of Solid Oxide Fuel Cells,” A. Chen, G. Bourne, K. Siebein, R.T. DeHoff, E. D. Wachsman, and K. Jones, Journal of the American Ceramic Society, 91, 2670-2675 (2008).
“Higher Conductivity Sm3+ and Nd3+ Co-Doped Ceria-Based Electrolyte Materials,” S. Omar, E. D. Wachsman, and J. C. Nino, Solid State Ionics, 178, 1890-1897 (2008).
“High Performance Composite Bi2Ru2O7 - Bi1.6Er0.4O3 Cathodes for Intermediate Temperature Solid Oxide Fuel Cells,” M. Camaratta and E.D. Wachsman, Journal of the Electrochemical Society, 155, B135-142 (2008).
“Higher Ionic Conductive Ceria Based Electrolytes for SOFCs,” S. Omar, E. D. Wachsman, and J. C. Nino, Applied Physics Letters, 91, 1444106 (2007).
“Three-Dimensional Reconstruction of Porous LSCF Cathodes,” D. Gostovic, J.R. Smith, K.S. Jones and E.D. Wachsman, Electrochemical and Solid State Letters, 10, B214-217 (2007).
“Silver-Bismuth Oxide Cathodes for IT-SOFCs; Part II – Improving Stability Through Microstructural Control,” M. Camaratta and E.D. Wachsman, Solid State Ionics, 178, 1411-1418 (2007).
“Silver-Bismuth Oxide Cathodes for IT-SOFCs; Part I – Microstructural Instability,” M. Camaratta and E.D. Wachsman, Solid State Ionics, 178, 1242-1247 (2007).
“Deconvolution of SOFC Cathode Polarization,” E.D. Wachsman, Solid Oxide Fuel Cells X, ECS Transactions, K. Eguchi, S.C. Singhal, H. Yokokawa, and J. Mizusaki, Ed, 7-1, 1051-1054 (2007).
“Bismuth Ruthenate – Stabilized Bismuth Oxide Composite Cathodes for IT-SOFCs,” A. Jaiswall, C.T. Hu, and E.D. Wachsman, Journal of the Electrochemical Society, 154, B1088-1094 (2007).
“A Co-doping Approach Towards Enhanced Ionic Conductivity in Fluorite Based Electrolytes,” S. Omar, E. D. Wachsman, and J. C. Nino, Solid State Ionics, 177, 3199-3203 (2006).
“Applicability of Bi2Ru2O7 Pyrochlore Electrodes for ESB and BiMEVOX Electrolytes,” V. Esposito, B.H. Luong, E.D. Bartolomeo, E.D. Wachsman, and E. Traversa, Journal of the Electrochemical Society, 153, A2232-A2238 (2006).
“Stable and High Conductivity Bilayered Electrolytes for Lower Temperature Solid Oxide Fuel Cells,” J.Y. Park and E.D. Wachsman, Ionics, 12-1, 15-20 (2006).
“Thermo-Chemical Expansion of SOFC Materials,” S.R. Bishop, K.L. Duncan, and E. D. Wachsman, Solid State Ionic Devices IV, ECS Transactions, E.D. Wachsman, F.H. Garzon, E. Traversa, R. Mukundan, and V. Birss, Ed., 1-7, 13-22 (2006).
“Development of Higher Ionic Conductivity Ceria Based Electrolyte,” S. Omar, E. D. Wachsman, and J. C. Nino, Solid State Ionic Devices IV, ECS Transactions, E.D. Wachsman, F.H. Garzon, E. Traversa, R. Mukundan, and V. Birss, Ed., 1-7, 73-82 (2006).
“Doubly Doped Bi2O3 Electrolytes with Higher Conductivity,” D.W. Jung, K.L. Duncan, and E. D. Wachsman, Solid State Ionic Devices IV, ECS Transactions, E.D. Wachsman, F.H. Garzon, E. Traversa, R. Mukundan, and V. Birss, Ed., 1-7, 63-72 (2006).
“Screen-Printed Dense Yttria-Stabilized-Zirconia Electrolytes for Anode-Supported Solid Oxide Fuel Cells,” B. M. White, M. L. Grilli, E. Traversa, E. Roncari, F. Pittalis, E. D. Wachsman and A. Sanson, Solid State Ionic Devices IV, ECS Transactions, E.D. Wachsman, F.H. Garzon, E. Traversa, R. Mukundan, and V. Birss, Ed., 1-7, 83-94 (2006).
“Evaluation of Time Constants Governing the Cathodic Reactions in SOFCs,” J. R. Smith, M. Orazem, K. Duncan, A. Chen, and E. D. Wachsman, Solid State Ionic Devices IV, ECS Transactions, E.D. Wachsman, F.H. Garzon, E. Traversa, R. Mukundan, and V. Birss, Ed., 1-7, 243-254 (2006).
“Synthesis and Characterization of Y2Ru2O7 and Y2-xPrxRu2O7 for the Cathode Application in Intermediate Temperature Solid Oxide Fuel Cells,” C. Abate, K. Duncan, V. Esposito, E. Traversa, and E. D. Wachsman, Solid State Ionic Devices IV, ECS Transactions, E.D. Wachsman, F.H. Garzon, E. Traversa, R. Mukundan, and V. Birss, Ed., 1-7, 255-262 (2006).
“Bi2Ru2O7 Pyrochlore Electrodes for Bi2O3 Based Electrolyte for IT-SOFC Applications,” V. Esposito, B. H. Luong, E. Di Bartolomeo, E. D. Wachsman, and E. Traversa, Solid State Ionic Devices IV, ECS Transactions, E.D. Wachsman, F.H. Garzon, E. Traversa, R. Mukundan, and V. Birss, Ed., 1-7, 263-278 (2006).
“Ag-Bi1.6Er0.4O3 as a Potential Cathode Material for IT-SOFCs,” M. Camaratta and E. D. Wachsman, Solid State Ionic Devices IV, ECS Transactions, E.D. Wachsman, F.H. Garzon, E. Traversa, R. Mukundan, and V. Birss, Ed., 1-7, 279-292 (2006).
“Direct Current Bias Studies on (Bi2O3)0.8(Er2O3)0.2 Electrolyte and Ag-(Bi2O3)0.8(Er2O3)0.2 Cermet Electrode,” A. Jaiswall and E.D. Wachsman, Solid State Ionics, 177 (7-8), 677-685 (2006).
“Effect of Harsh Anneals on the LSM/YSZ Interfacial Impedance Profile,” J. R. Smith and E. D. Wachsman, Electrochimica Acta, 51, 1585-91 (2006).
“Pb2Ru2O6.5 as a Low-Temperature Cathode for Bismuth Oxide Electrolytes,” V. Esposito, E. Traversa, and E.D. Wachsman, Journal of the Electrochemical Society, 152 (12), A2300-2306 (2005).
“Fabrication and Characterization of High-Conductivity Bilayered Electrolytes for Intermediate-Temperature Solid Oxide Fuel Cells,” J.Y. Park and E.D. Wachsman, Journal of the American Ceramic Society, 88 [9], 2402-2408 (2005).
“Fabrication of Anode Supported Thick Film Ceria Electrolytes for IT-SOFCs,” A. Jaiswal and E.D. Wachsman, Ionics, 11, 161-170 (2005).
“Lower Temperature Electrolytic Reduction of CO2 to O2 and CO with High Conductivity Solid Oxide Bilayer Electrolytes,” J.Y. Park and E.D. Wachsman, Journal of the Electrochemical Society, 152 (8), A1654-1659 (2005).
“RuO2–Based Dense Electrodes for ESB Electrolyte IT-SOFCs,” V. Esposito, E. Traversa, and E.D. Wachsman, Solid Oxide Fuel Cells IX, Electrochem. Soc., S.C. Singhal and J. Mizusaki, Ed, 2005-07, 1764-1772 (2005).
“Ceramic PLD Coatings on Ferritic Stainless Steel Interconnect in IT-SOFCs,” F. Mattu, E.D. Wachsman and E. Traversa, Solid Oxide Fuel Cells IX, Electrochem. Soc., S.C. Singhal and J. Mizusaki, Ed, 2005-07, (2005).
“Bismuth-Ruthenate-Based Cathodes for IT-SOFCs,” A. Jaiswal and E.D. Wachsman, Journal of the Electrochemical Society, 152, A787-790 (2005).
“Preparation and Characterization of Lead Ruthenate Based Composite Cathodes for SOFC Applications,” V. Esposito, E. Traversa, and E.D. Wachsman, Solid State Ionics-2004, Materials Research Society, P. Knauth, C. Masqulier, E. Traversa, and E.D. Wachsman, Ed., 835, 217-222 (2005).
“Modeling the Performance and Stability of Bilayer Electrolytes for Low-Temperature Solid Oxide Fuel Cells,” K.L. Duncan and E.D. Wachsman, Solid State Ionic Devices III, Electrochem. Soc., E.D. Wachsman, K.S. Lyons, M. Carolyn, F. Garzon, M. Liu, and J. Stetter, Ed., 2002-26, 308-318 (2003).
“Stable High Conductivity Bilayered Electrolytes for Low Temperature Solid Oxide Fuel Cells,” J.Y. Park and E.D. Wachsman, Solid Oxide Fuel Cells VIII, Electrochem. Soc., S.C. Singhal and M. Dokiya, Ed, 2003-07, 289-298 (2003).
"A Higher Conductivity Bi2O3-Based Electrolyte," N. Jiang, E. D. Wachsman, and S. H. Jung, Solid State Ionics, 150, 347-353 (2002).
"Structural Stability and Conductivity of (WO3)x(Dy2O3)y(Bi2O3)1-x-y," S. H. Jung, E. D. Wachsman, and N. Jiang, Ionics, 8, 210-214 (2002).
"Ceria/Bismuth Oxide Bilayered Electrolytes for Low Temperature Solid Oxide Fuel Cells," E. D. Wachsman and K. L. Duncan, SOFC-VI, Electrochem. Soc., S.C. Singhal, Ed., 99-19, 264-274 (1999).
"Stable High Conductivity Ceria/Bismuth Oxide Bilayered Electrolytes," E. D. Wachsman, P. Jayaweera, N. Jiang, D. M. Lowe, and B.G. Pound, Journal of the Electrochemical Society, 144-1, 233-236 (1997).
"Structural and Defect Studies in Solid Oxide Electrolytes," E. D. Wachsman, G. R. Ball, N. Jiang, and D. A. Stevenson, Solid State Ionics, 52, 213-218 (1992).
"Spectroscopic Investigation of Oxygen Vacancies in Solid Oxide Electrolytes," E. D. Wachsman, N. Jiang, C. W. Frank, D. M. Mason, and D. A. Stevenson, Applied Physics A, 50, 545-549 (1990).
"Electrochemical Abatement of Pollutants NOx and SOx in Coal Combustion Exhaust Gases Employing a Solid Oxide Electrolyte," E. D. Wachsman, N. Jiang, D. M. Mason, and D. A. Stevenson, Proceedings of the 1989 International Conference on Coal Science, Tokyo, Japan 1103-1106 (1989).