Ion transport membranes are useful in gas separation such as production of O2 and H2 gasses and the manufacturing of syn gas. Our lab’s advances in fundamentals of ionic transport have led to increased ion selectivity and permeability of membranes. We have developed materials that not only provide higher ionic conductivity, but do so at a dramatically lower temperatures than previously required.
Our development of a bismuth oxide bi-layer electrolyte is particularly exciting. The study of ionic transport in cubic bismuth oxides is important technically because these materials exhibit the highest oxygen-ion conductivity of any material known to date. From a scientific point of view, the study of ionic transport in cubic bismuth oxides also provides an understanding of how anion transport in oxides with the fluorite structure is influenced by high vacancy concentration and how this is influenced by local structure.
Publications
“Solvothermal Synthesis of High Hydrogen Permeable Pd/Ag Alloy Nanoparticles and their Hydrogen Transport Properties,” S.-Y. Jeon, H.-N. Im, J.-S. Lim, E. D. Wachsman, and S.-J. Song, Ionics, 19, 171-176 (2013).
“SrCe0.7Zr0.2Eu0.1O3-based Hydrogen Transport Water Gas Shift Reactor,” J. Li, H. Yoon, T. K. Oh, and E. D. Wachsman, International Journal of Hydrogen Energy, 37, 16006-16012 (2012).
“Carbon Dioxide Reforming of Methane in a SrCe0.7Zr0.2Eu0.1O3 Proton Conducting Membrane Reactor,” J. Li, H. Yoon, and E. D. Wachsman, International Journal of Hydrogen Energy, 37, 19125-19132 (2012).
“High Sulfur Tolerance Dual-Functional Cermet Hydrogen Separation Membranes,” S.-Y. Jeon, M.-B. Choi, E. D. Wachsman, and S.-J. Song, Journal of Membrane Science, 382, 323-327 (2011).
“Hydrogen Permeation Through Thin Supported SrCe0.7Zr0.2Eu0.1O3-δ Membranes; Dependence of Flux on Defect Equilibria and Operating Conditions,” J. Li, H. Yoon, and E. D. Wachsman, Journal of Membrane Science, 381, 126-131 (2011).
“Hydrogen Separation by Pd-CaZr0.9Y0.1O3-δ Cermet Composite Membranes,” S.-Y. Jeon, D.-K. Lim, M.-B. Choi, E. D. Wachsman, and S.-J. Song, Separation and Purification Technology, 79, 337 (2011).
“Stability of SrCe1-xZrxO3-x Under Water Gas Shift Reaction Conditions,” J. Li, H. Yoon, T.K. Oh, and E. D. Wachsman, Journal of The Electrochemistry Society, 157, B383-387 (2010).
“High Temperature SrCe0.9Eu0.1O3-δ Proton Conducting Membrane Reactor for H2 Production Using the Water-Gas Shift Reaction,” J. Li, H. Yoon, T.-K. Oh, and E. D. Wachsman, Applied Catalysis B. Environmental, 92, 234-239 (2009).
“Hydrogen Permeation Through Thin Supported SrZr0.2Ce0.8-xEuxO3-δ Membranes,” T.-K. Oh, H. Yoon, J. Li, and E. D. Wachsman, Journal of Membrane Science, 345, 1-4 (2009).
“Fabrication of Thin Film SrCe0.9Eu0.1O3-δ Hydrogen Separation Membranes on Ni-SrCeO3 Porous Tubular Supports,” H. Yoon, S. J. Song, T.-K. Oh, J. Li, K. L. Duncan, and E. D. Wachsman, Journal of the American Ceramic Society, 92, 1849-1852 (2009).
“Permeation Through SrCe0.9Eu0.1O3-δ / Ni-SrCeO3 Tubular Hydrogen Separation Membranes,” H. Yoon, T.-K. Oh, J. Li, K. L. Duncan, and E. D. Wachsman, Journal of the Electrochemical Society, 156, B791-794 (2009).
"Stability of Zr-Doped SrCeO3-δ Under Wet CO/CO2 Atmospheres," J. Li, H. Yoon, T. Oh and E.D. Wachsman, Solid State Ionic Devices V, ECS Transactions, E.D. Wachsman, F.H. Garzon, E. Traversa, R. Mukundan, and A. Manivannan, Ed., 11-33, 81-87 (2008).
“Annealing Effect on the Hydrogen Permeability of Cermet Membranes,” S. J. Song, E. D. Wachsman, T. H. Lee, L. Chen, S. E. Dorris, and U. Balachandran, Chemistry Letters, 35, 1378-1379 (2006).
"Defect Structure and Transport Properties of Ni-SrCeO3-δ Cermet for Hydrogen Separation Membrane," S. J. Song, T. H. Lee, E. D. Wachsman, L. Chen, S. E. Dorris, and U. Balachandran, Journal of the Electrochemical Society, 152 (11), J125-129 (2005).
"Hydrogen Permeability of SrCe0.95Eu0.05O3-δ (x = 0.05, M = Eu, Sm)," S. J. Song, E. D. Wachsman, J. Rhodes, S. E. Dorris, and U. Balachandran, Solid State Ionics, 167, 99-105 (2004).
"Numerical Modeling of Hydrogen Permeation in Chemical Potential Gradients," S. J. Song, E. D. Wachsman, J. Rhodes, S. E. Dorris, and U. Balachandran, Solid State Ionics, 164, 107-116 (2003).
"Functionally Gradient Bilayer Oxide Membranes and Electrolytes," E. D. Wachsman, Solid State Ionics, 152-153, 657-662 (2002).
"Stable Mixed-Conducting Bilayer Membranes for Direct Conversion of Methane to Syngas," E. D. Wachsman and T.L. Clites, Journal of the Electrochemical Society, 149 (3) A242-246 (2002).
"Mixed Protonic Electronic Barium Cerates for Hydrogen Separation," J. Rhodes and E. D. Wachsman, Solid State Ionic Devices II - Ceramic Sensors, Electrochem. Soc., E.D. Wachsman, W. Weppner, E. Traversa, M. Liu, P. Vanysek, and N. Yamazoe, Ed., 2000-32, 137-147 (2001).
"Mixed-Conducting Barium Cerate Membranes for Hydrogen Separation," J. M. Rhodes and E. D. Wachsman, Solid State Ionic Devices, Electrochem. Soc., E.D. Wachsman, J. Akridge, M. Liu, and N. Yamazoe, Ed., 99-13, 151-158 (1999).
"Development of Stable Mixed-Conducting Bilayer Membranes for Direct Conversion of Methane to Syngas," T.L. Clites and E. D. Wachsman, Solid State Ionic Devices, Electrochem. Soc., E.D. Wachsman, J. Akridge, M. Liu, and N. Yamazoe, Ed., 99-13, 110-120 (1999).
"Stable High Conductivity Functionally Gradient Bilayered Solid Oxide Electrolytes and Membranes," E. D. Wachsman, P. Jayaweera, N. Jiang, D. M. Lowe, and B.G. Pound, Ceramic Membranes, H.U. Anderson, A.C. Khankar, and M. Liu, eds., The Electrochemical Society Inc., Pennington, NJ, 95-24, 237 (1997).
Return to Top
|